حل معادلات ماتریسی بدوضع با استفاده از روش های تصویری
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر
- author فاطمه سلیمانی
- adviser عظیم ریواز
- publication year 1392
abstract
در این پایان نامه به مطالعه و بررسی روش های محاسبه ی جواب تقریبی و معنی دار مسائل بدوضع گسسته در مقیاس بزرگ پرداخته می شود. بدین منظور معادلات ماتریسی بدوضع ax=b، ?_(i=1)^p??a_i xb_i ?=g و ?_(j=1)^p??a_(i,j) x_j b_(i,j)=g_i,(i=1,…,p)? مورد بررسی قرار می گیرند. روش هایی که ما برای حل این معادلات در نظر می گیریم، روش های منظم سازی می باشند. با توجه به اینکه ماتریس ضرایب هر سه معادله فوق تنک در نظر گرفته می شود، روش های تصویری نیز مورد استفاده قرار می گیرند. در پایان با آوردن مثال هایی کاربرد این معادلات ماتریسی را در پردازش تصویر بیان می کنیم.
similar resources
روش های تصویری برای حل معادلات ماتریسی
هدف از تحلیل همگرایی یک روش زیر فضای کرایلف، توصیف رفتار نرم خطا و نرم باقیمانده متناظر با این روش بر حسب داده های ورودی مساله داده شده، از قبیل خواص ماتریس دستگاه، اطلاعات سمت راست و حدس اولیه است. در این رساله، تحلیل همگرایی روش گرادیان مزدوج و روش های gl-fom و gl-gmres را، به ترتیب، برای حل دستگاه معادلات خطی ax=b و معادلات ماتریسی axb=c، با ضرایب متقارن معین مثبت، مطالعه می کنیم. برای ساخت ...
15 صفحه اولروش های تکراری برای حل مسائل بدوضع معادلات دیفرانسیل جزیی
دراین پایان نامه ابتدا به بیان برخی فضاها و خواص آنها جهت معرفی عملگرها به خصوص عملگر های خطی و ارائه ی ویژگی های آن می پردازیم. سپس مفاهیم مسائل خوش وضع و بدوضع و همچنین مسائل معکوس را معرفی نموده و راه حل های مختلف را برای حل مسائل معکوس مانند گسسته سازی ویا کمینه سازی آنها ارائه می دهد. همچنین روش انتخاب را برای حل مسائل بدوضع بر می گزیند، سپس روش شبه معکوس را برای حل مسأله ی کشی در حل معادل...
15 صفحه اولروش های تکراری برای حل معادلات ماتریسی
در سال 2005 پنگ وهمکاران یک روش تکراری برای یافتن جواب متقارن از معادله ماتریسی axb=c ارائه داده اند. هانگ و همکاران نیز یک روش تکراری جدید برای حل معادلات ماتریسی خطی axb=c برای ماتریس پادمتقارن x ارائه کرده اند. در سال 2008 دهقان و حجاریان شرایط لازم وکافی برای قابل حل بودن معادلات ماتریسی a_1xb_1=d1,a_1x=c_1,xb_2=c_2وa_1x=c_1,xb_2=c_2,a_3x=c_3,xb_4=c_4روی ماتریس بازتابی یا غیر بازتابی x پیشن...
15 صفحه اولحل عددی معادلات بوسینسک تراکمناپذیر با استفاده از روش فشرده ترکیبی مرتبه ششم
حل دقیق معادلات حاکم بر جریان گرانی میتواند در تحلیل دینامیک پدیدههای جوّی و اقیانوسی مرتبط مفید باشد. در این کار معادلات حاکم بر جریان گرانی با تقریب بوسینسک در قالب شارش گرانی Lock exchange با استفاده از روش فشرده ترکیبی مرتبه ششم حل عددی میشوند. بهمنظور مقایسه دقت روش فشرده ترکیبی مرتبه ششم با روشهای مرتبه دوم مرکزی و فشرده مرتبه چهارم، از حل عددی مسئله گردش اقیانوسی استومل استفاده شده ا...
full textحل عددی معادلات آب کمعمق با استفاده از روش فشرده ترکیبی مرتبه ششم
در این تحقیق، حل عددی معادلات آب کمعمق غیرخطی در صفحه f برحسب میدانهای ارتفاع، واگرایی و تاوایی با استفاده از روش فشرده ترکیبی مرتبه ششم مورد بررسی قرار میگیرد و نتایج آن با روشهای مرتبه دوم مرکزی، فشرده مرتبه چهارم، اَبَرفشرده مرتبه ششم و طیفیوار مقایسه میشود. برای این منظور، یک جت مداری بهمنزلة شرایط اولیه درنظر گرفته میشود که با گذشت زمان به ساختارهایی پیچیده با مقیاس کوچکتر ...
full textحل عددی معادلات آب کم عمق با استفاده از روش فشرده
در این مقاله حل عددی شکل پایستار معادلات اب کم عمق در صفحه b با استفاده از روش فشرده مرتبه چهارم ارائه می شود . معادلات آب کم عمق در واقع بیان کننده حرکت یک جو یا اقیانوس یک لایه ای همراه با تقریب هیدوستاتیک می باشند، که در انها فرض می شود چگالی ثابت است و علاوه بر آن جو را خشک و هر دو را بدون اصطکاک فرض می کنند. برای گسسته سازی ، معادلات حاصل با استفاده از روش ADI در دوراستای محور های مختصات ش...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023